B.A/B.Sc $5^{\text {th }}$ Semester (Honours) Examination, 2021 (CBCS)
 Subject: Mathematics
 Course: BMH5CC11
 (Partial Differential Equations and Applications)

Time: 3 Hours
Full Marks: 60

The figures in the margin indicate full marks.
Candidates are required to write their answers in their own words as far as practicable.
[Notation and Symbols have their usual meaning]

1. Answer any six questions:
 $$
6 \times 5=30
$$

(a) Form a quasi linear first order partial differential equation from the given relation,
$z=f(x-3 y)+g(\log (x-3 y))+h(3 x-y)$.
(b) Solve the equation,

$$
\begin{equation*}
x p-y q=\frac{y^{2}-x^{2}}{z}, \tag{5}
\end{equation*}
$$

given that $z\left(x_{0}(t), y_{0}(t)\right)=t$ on the curve $\gamma: x=x_{0}(t)=2 t, y=y_{0}(t)=t, t>0$.
(c) Solve: $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$, given that $u(x, 0)=6 e^{-3 x}$.
(d) If $z(x, y)$ be the solution of $x p+q=1$ with initial condition $z(x, 0)=\log x$, then find $z(e, 1)$.
(e) Determine the region where the partial differential equation,

$$
\left(x^{2}+y^{2}-1\right) \frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial^{2} u}{\partial x \partial y}+\left(x^{2}+y^{2}-1\right) \frac{\partial^{2} u}{\partial y^{2}}=0
$$

is hyperbolic, parabolic or elliptic .
(f) Consider partial differential equation of the form:

$$
a r+b s+c t+f(x, y, z, p, q)=0 \text { with } b^{2}-4 a c>0
$$

Describe the steps of reducing the above equation into its canonical form.
(g) Obtain the solution of the diffusion equation

$$
\frac{\partial u}{\partial t}=K \frac{\partial^{2} u}{\partial x^{2}}, K>0, t>0, a<x<b
$$

subject to the conditions
i) $u(x, t)$ remains finite as $t \rightarrow \infty$
ii) $u_{x}(a, t)=u_{x}(b, t)=0, t \geq 0$
iii) $u(x, 0)=f(x), a \leq x \leq b$.
(h) Solve, $(y+z) p-(x+z) q=x-y$.

2. Answer any three questions:

(a) (i) Express the Laplace equation $\nabla^{2} u=0$ in cylindrical coordinates.
(ii) Find the equation of the integral surface of the partial differential equation
$2 y(z-3) p+(2 x-z) q=y(2 x-3)$
which passes through the circle
$z=0, x^{2}+y^{2}=2 x$.
(b) (i) Reduce the partial differential equation $y^{2} \frac{\partial^{2} z}{\partial x^{2}}-x^{2} \frac{\partial^{2} z}{\partial y^{2}}=0$ to its canonical form.
(ii) Using the method of characteristics solve the Cauchy problem:
$p z+q=1$,
given that $z\left(x_{0}(t), y_{0}(t)\right)=t / 2$ on the curve $\gamma: x=x_{0}(t)=t, y=y_{0}(t)=t, 0 \leq t \leq 1$.
(c) (i) Solve: $x p-y q=z$ with initial condition $z(x, 0)=f(x), x \geq 0$.
(ii) Solve $\left(x^{2}+y^{2}+y z\right) p+\left(x^{2}+y^{2}-x z\right) q=z(x+y)$.
(d) (i) A tightly stretched string of length π is held fixed at its ends $x=0$ and $x=\pi$ and is subjected to an initial displacement
$u(x, 0)=u_{o} \sin 2 x, 0 \leq x \leq \pi$
and velocity
$u_{t}(x, 0)=v_{o} \sin x, 0 \leq x \leq \pi$
If the displacement $u(x, t)$ satisfies the equation
$\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0,0<x<\pi, t>0$,
determine $u(x, t)$ by D'Alembert's method.
(ii) Prove that solution of $\frac{\partial^{2} z}{\partial x^{2}}+z=0$, with $x=0, z=e^{y}$ and $\frac{\partial z}{\partial x}=1$, is $z=\sin x+$ $e^{y} \cos x$.
(e) (i) Solve the partial differential equation: $\frac{\partial^{2} z}{\partial x \partial y}=x y^{2}$.
(ii) Solve by the method of separation of variable
$\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}=0$.

